nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.44 241-251
高粱功能着丝粒的鉴定及序列组成分析
基金项目(Foundation): 国家自然科学基金项目(32070544)资助
邮箱(Email): ww462@126.com;kwang5@126.com;
DOI: 10.13417/j.gab.044.000241
摘要:

为准确定义高粱(Sorghum bicolor)功能着丝粒并解释其序列构成,本研究制备了高粱着丝粒特异性组蛋白3变体(centromeric histone H3, CENH3)抗体,并开展了CENH3染色质免疫共沉淀测序(chromatin immunoprecipitation and sequencing, ChIP-seq),通过ChIP-seq数据的基因组回帖,明确了高粱品种‘BTx623’功能着丝粒的定位。结果显示‘BTx623’的着丝粒大小介于1.541~2.196 Mb之间,平均值为1.904 Mb。采用从头组装的分析方法开展着丝粒重复序列的鉴定,结果显示‘BTx623’着丝粒含有串联重复和Ty3_gypsy反转录转座子两类重复序列,且以串联重复序列为主。其中,CL1和CL2两个串联重复序列最为富集,基因组占比达到3.13%和2.36%,远高于其他重复序列。细胞学分析结果显示,上述两种串联重复序列在基因组中的跨度可达1.6 Mb;值得注意的是,这些着丝粒重复序列并非仅分布在功能着丝粒区,这表明仅采用序列同源比对预测着丝粒的方法往往难以准确界定功能着丝粒。针对功能着丝粒的不同类型核小体区分析发现,除2号与6号染色体外,所有着丝粒中含有CENH3组蛋白的核小体的比例均低于含有H3组蛋白的核小体,CENH3核小体区与H3核小体区的长度比值在0.37~0.52之间,说明高粱着丝粒中仍然以H3核小体区为主。本研究对高粱‘BTx623’功能着丝粒的定位及序列组成的分析,将为高粱基因组及功能基因组研究提供借鉴。

Abstract:

To characterize functional centromeres in Sorghum bicolor, we generated an antibody specifically against centromeric histone H3(CENH3) and performed chromatin immunoprecipitation and sequencing(ChIP-seq). By mapping the ChIP-seq data to the sorghum genome, we defined functional centromeres in S. bicolor(‘BTx623'). Our results revealed that the sizes of ‘BTx623'centromeres ranged from 1.541 Mb to 2.196 Mb, with an average of 1.904 Mb. The centromere of ‘BTx623' is mainly composed of tandem repeat and Ty3_gypsy retrotransposons, and the former is dominated. Two tandem repeats CL1 and CL2 showed the most abundant in the centromeres, accounting for 3.13% and 2.36% of the genome, respectively. Cytological analysis demonstrated that these two tandem repeats spanned genomic size up to 1.6 Mb. Notably, some of these centromeric repeats identified here are not specific to centromeric regions, suggesting that centromere identification based solely on sequence comparison may not be sufficient for accurately defining functional centromeres. CENH3 and H3 subdomain analysis revealed that, except for chromosomes 2 and 6, the proportion of CENH3 subdomain is lower than that of H3 in all centromeres, with CENH3/H3 ratios ranging from 0.37 to 0.52. This finding indicates that H3 nucleosomes remain predominant within sorghum centromeres. The characterization of functional centromeres in ‘BTx623' serves as a valuable resource, laying the groundwork for future research on the sorghum genome and its functional genomics.

参考文献

宫少达,谢文召,赵如鹏,等,2024.植物端粒到端粒(T2T)基因组研究进展与展望.基因组学与应用生物学,43(6):933-942.[GONG S D,XIE W Z,ZHAO R P,et al.,2024.Progress and prospect of plant telomere-to-telomere (T2T) genome.Genomics and Applied Biology,43(6):933-942.]

佘朝文,宋运淳,2006.植物着丝粒结构和功能的研究进展.遗传,28(12):1597-1606.[SHE C W,SONG Y C,2006.Advances in research of the structure and function of plant centromeres.Hereditas(Beijing),28(12):1597-1606.]

AHMAD S F,SINGCHAT W,JEHANGIR M,et al.,2020.Dark matter of primate genomes:satellite DNA repeats and their evolutionary dynamics.Cells,9(12):E2714.

BENSON G,1999.Tandem repeats finder:a program to analyze DNA sequences.Nucleic Acids Res.,27(2):573-580.

CHEN J,WANG Z J,TAN K W,et al.,2023.A complete telomere-to-telomere assembly of the maize genome.Nat.Genet.,55(7):1221-1231.

DING Y Q,WANG Y L,XU J X,et al.,2024.A telomere-to-telomere genome assembly of Hongyingzi,a Sorghum cultivar used for Chinese Baijiu production.Crop J.,12(2):635-640.

GONG Z,WU Y,KOBLíZKOVá A,et al.,2012.Repeatless and repeat-based centromeres in potato:implications for centromere evolution.Plant Cell,24(9):3559-3574.

HAN J,MASONBRINK R E,SHAN W,et al.,2016.Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton.Plant J.,88(6):992-1005.

HAN M M,YANG Y E,ZHANG M Q,et al.,2021.Considerations regarding centromere assembly in plant whole-genome sequencing.Methods,187:54-56.

HU Y,CHEN J D,FANG L,et al.,2019.Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton.Nat.Genet.,51:739-748.

IOVENE M,YU Q Y,MING R,et al.,2015.Evidence for emergence of sex-determining gene(s) in a centromeric region in Vasconcellea parviflora.Genetics,199(2):413-421.

JIANG J,BIRCHLER J A,2013.Plant Centromere Biology.Ames,Iowa:John Wiley & Sons.

KIM D,PERTEA G,TRAPNELL C,et al.,2013.TopHat2:accurate alignment of transcriptomes in the presence of insertions,deletions and gene fusions.Genome Biol.,14(4):R36.

LANGMEAD B,SALZBERG S L,2012.Fast gapped-read alignment with bowtie 2.Nat.Meth.,9(4):357-359.

LI H,HANDSAKER B,WYSOKER A,et al.,2009.The sequence alignment/map format and SAMtools.Bioinforma-tics,25(16):2078-2079.

LI M,CHEN C H,WANG H G,et al.,2024.Telomere-to-telomere genome assembly of Sorghum.Sci.Data,11:835.

LI Y J,LI Y,ZUO S,ZHANG Z L,et al.,2018.Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus.Plant J.,93(6):1088-1101.

LIAO Y,ZHANG X M,LI B,et al.,2018.Comparison of Oryza sativa and Oryza brachyantha genomes reveals selection-driven gene escape from the centromeric regions.Plant Cell,30(8):1729-1744.

NOVáK P,NEUMANN P,MACAS J,2010.Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data.BMC Bioinform.,11:378.

NOVáK P,NEUMANN P,PECH J,et al.,2013.RepeatExplorer:a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads.Bioinformatics,29(6):792-793.

OHZEKI J,LARIONOV V,EARNSHAW W C,et al.,2019.De novo formation and epigenetic maintenance of centromere chromatin.Curr.Opin.Cell Biol.,58:15-25.

OU S J,SU W J,LIAO Y,et al.,2019.Benchmarking transposable element annotation methods for creation of a streamlined,comprehensive pipeline.Genome Biol.,20(1):275.

OUYANG S,ZHU W,HAMILTON J,et al.,2007.The TIGR rice genome annotation resource:improvements and new features.Nucleic Acids Res.,35(database issue):D883-D887.

PATERSON A H,BOWERS J E,BRUGGMANN R,et al.,2009.The Sorghum bicolor genome and the diversification of grasses.Nature,457:551-556.

QUINLAN A R,HALL I M,2010.BEDTools:a flexible suite of utilities for comparing genomic features.Bioinformatics,26(6):841-842.

REISER L,BAKKER E,SUBRAMANIAM S,et al.,2024.The Arabidopsis information resource in 2024.Genetics,227(1):iyae027.

ROBINSON J T,THORVALDSDóTTIR H,WINCKLER W,et al.,2011.Integrative genomics viewer.Nat.Biotechnol.,29(1):24-26.

TRAPNELL C,ROBERTS A,GOFF L,et al.,2012.Differen-tial gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.Nat.Protoc.,7:562-578.

UNIPROT CONSORTIUM,2023.UniProt:the universal protein knowledgebase in 2023.Nucleic Acids Research,51(D1):D523-D531.

VILLASANTE A,MéNDEZ-LAGO M,ABAD J P,et al.,2007.The birth of the centromere.Cell Cycle (Georget.Tex),6(23):2872-2876.

WANG K,ZHANG W P,JIANG Y Q,et al.,2013.Systematic application of DNA fiber-FISH technique in cotton.PLoS ONE,8(9):e75674.

WANG S,JIN W W,WANG K,2019.Centromere histone H3- and phospholipase-mediated haploid induction in plants.Plant Meth.,15(1):42.

WEI C Z,GAO L,XIAO R X,et al.,2024.Complete telomere-to-telomere assemblies of two Sorghum genomes to guide biological discovery.Imeta,3(2):e193.

ZANG C Z,SCHONES D E,ZENG C,et al.,2009.A clustering approach for identification of enriched domains from histone modification ChIP-Seq data.Bioinformatics,25(15):1952-1958.

ZHANG H,DAWE R K,2012.Total centromere size and genome size are strongly correlated in ten grass species.Chromosome Res.,20(4):403-412.

基本信息:

DOI:10.13417/j.gab.044.000241

中图分类号:S514

引用信息:

[1]戴妍,周嘉亮,姜鹏等.高粱功能着丝粒的鉴定及序列组成分析[J].基因组学与应用生物学,2025,44(03):241-251.DOI:10.13417/j.gab.044.000241.

基金信息:

国家自然科学基金项目(32070544)资助

检 索 高级检索