225 | 0 | 14 |
下载次数 | 被引频次 | 阅读次数 |
黑腹果蝇(Drosophila melanogaster)是研究宿主与病毒互作机制的模式生物,RNA干扰(RNA interference, RNAi)是果蝇最主要的抗病毒机制。果蝇C病毒(Drosophila C virus, DCV)是天然感染果蝇的正链RNA病毒,通过编码RNA沉默抑制子(viral suppressors of RNAi, VSR)1A蛋白(DCV1A)来抑制果蝇RNAi通路。本研究以DCV1A为诱饵蛋白,通过免疫共沉淀(co-immunoprecipitation, Co-IP)和质谱分析,获得了与DCV1A可能存在互作的108个靶蛋白。通过免疫共沉淀和Western blot分析,在果蝇S2细胞中验证了DCV1A与原肌球蛋白2(tropomyosin 2, TM2)存在互作。当细胞感染DCV后,细胞内Tm2的表达水平被显著诱导上调;通过RNAi干扰细胞中Tm2的表达后DCV复制水平显著增加,过表达Tm2基因后DCV复制水平有所下降。在S2细胞中共表达DCV1A和Tm2基因时,DCV1A蛋白水平显著下调,DCV复制也受到抑制。在Tm2突变型果蝇和野生型果蝇的胸腔内注射DCV,监测存活率发现,与野生型果蝇相比,Tm2基因突变体果蝇对DCV更为敏感。研究结果表明,在果蝇细胞水平和成虫水平上Tm2均发挥抑制DCV复制的作用。
Abstract:Drosophila melanogaster is an established model to study innate immune responses and host-virus interactions. RNA interference(RNAi) is one of the main antiviral mechanisms of Drosophila. Drosophila C virus(DCV) is a positive-sense RNA virus which is a natural pathogen of Drosophila, it encodes a viral suppressor of RNAi(VSR) DCV1A to counteract the RNAi pathway. In this study, a total of 108 proteins were identified in Drosophila S2 cells that may interact with DCV1A by co-immunoprecipitation(Co-IP) and mass spectrometry. Then the interaction between DCV1A and TM2 was validated by Co-IP and Western blot to identify the interacting protein TM2 of DCV1A.The expression level of Tm2 was increased in S2 cells infected with DCV; When DCV1A and Tm2 genes were co-expressed in S2 cells, the level of DCV1A protein was significantly down-regulated, then DCV replication was also suppressed in the co-transfected cells. Both Tm2 mutant and wild-type fruit flies were intrathoracically injected with DCV and the survival rates were monitored daily. The results showed that Tm2 mutant flies were more susceptible to DCV infection than wild-type fruit flies. Taking together, the results presented in the study demonstrated that Tm2 inhibited DCV replication in both S2 cells and adult fruit flies.
Aliyari R.,Wu Q.F.,Li H.W.,Wang X.H.,Li F.,Green L.D.,Han C.S.,Li W.X.,and Ding S.W.,2008,Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila,Cell Host Microbe,4(4):387-397.
Bonning B.C.,and Saleh M.C.,2021,The interplay between viruses and RNAi pathways in insects,Annu.Rev.Entomol.,66:61-79.
Bradbury P.,Nader C.P.,Cidem A.,Rutting S.,Sylvester D.,He P.,Rezcallah M.C.,O′Neill G.M.,and Ammit A.J.,2021,Tropomyosin 2.1 collaborates with fibronectin to promote TGF-β1-induced contraction of human lung fibroblasts,Respir.Res.,22(1):129.
Bronkhorst A.W.,and van Rij R.P.,2014,The long and short of antiviral defense:small RNA-based immunity in insects,Curr.Opin.Virol.,7:19-28.
de Faria I.J.S.,Aguiar E.R.G.R.,Olmo R.P.,Alves Da Silva J.,Daeffler L.,Carthew R.W.,Imler J.L.,and Marques J.T.,2022,Invading viral DNA triggers ds-RNA synthesis by RNA polymerase Ⅱ to activate antiviral RNA interference in Drosophila,Cell Rep.,39(12):110976.
Fei Q.L.,Han Y.X.,Qi R.J.,Gao Y.,Fang L.,Hou R.,Cai R.L.,and Qi Y.,2018,Shuang-Huang-Lian prevents basophilic granulocyte activation to suppress Th2 immunity,BMC Complement.Altern.Med.,18(1):2.
Guo Z.X.,Li Y.,and Ding S.W.,2019,Small RNA-based antimicrobial immunity,Nat.Rev.Immunol.,19(1):31-44.
Jaiswal D.,Sidharthan V.K.,Sharma S.K.,Rai R.,Choudhary N.,Ghosh A.,and Baranwal V.K.,2021,Candidatus Liberibacter asiaticus manipulates the expression of vitellogenin,cytoskeleton,and endocytotic pathway-related genes to become circulative in its vector,Diaphorina citri (Hemiptera:Psyllidae),Biotech.,11(2):88.
Jin L.Y.,Chen M.N.,Xiang M.Q.,and Guo Z.X.,2022,RNAi-based antiviral innate immunity in plants,Viruses,14(2):432.
Li H.W.,Li W.X.,and Ding S.W.,2002,Induction and suppression of RNA silencing by an animal virus,Science,296(5571):1319-1321.
Li S.H.,Li F.H.,Sun Z.,Zhang X.J.,and Xiang J.H.,2016,Differentially proteomic analysis of the Chinese shrimp at WSSV latent and acute infection stages by iTRAQ approach,Fish Shellfish Immunol.,54:629-638.
Macke A.,Lopez W.,Carlson D.J.,and Carlson K.A.,2020,Nora virus VP4b and ORF1 circulate in hemolymph of infected D.Melanogaster with coordinate expression of vago and Vir-1,Vaccines,8(3):491.
Madan A.,Viswanathan M.C.,Woulfe K.C.,Schmidt W.,Sidor A.,Liu T.,Nguyen T.H.,Trinh B.,Wilson C.,Madathil S.,Vogler G.,O′Rourke B.,Biesiadecki B.J.,Tobacman L.S.,and Cammarato A.,2020,TNNT2 mutations in the tropomyosin binding region of TNT1 disrupt its role in contractile inhibition and stimulate cardiac dysfunction,Proc.Natl.Acad.Sci.USA,117(31):18822-18831.
Maxi J.K.,Foret B.L.,Amedee A.M.,McDaniel L.S.,Nelson S.,Simon L.,Edwards S.,and Molina P.E.,2021,Antiretroviral therapy administration reduces neuroinflammation without restoring brain-derived neurotrophic factor signaling in alcohol-administered simian immunodeficiency virus-infected macaques,AIDS,35(9):1343-1353.
McAdow J.,Yang S.,Ou T.,Huang G.,Dobbs M.B.,Gurnett C.A.,Greenberg M.J.,and Johnson A.N.,2022,A pathogenic mechanism associated with myo-pathies and structural birth defects involves TPM2- directed myogenesis,JCI Insight,7(12):e152466.
Mu J.F.,Zhang H.B.,Li T.,Shu T.,Qiu Y.,and Zhou X.,2020,The 3A protein of coxsackievirus B3 acts as a viral suppressor of RNA interference,J.Gen.Virol.,101(10):1069-1078.
Nayak A.,Berry B.,Tassetto M.,Kunitomi M.,Acevedo A.,Deng C.H.,Krutchinsky A.,Gross J.,Antoniewski C.,and Andino R.,2010,Cricket paralysis virus antagonizes argonaute 2 to modulate antiviral defense in Drosophila,Nat.Struct.Mol.Biol.,17(5):547-554.
Nayak A.,Kim D.Y.,Trnka M.J.,Kerr C.H.,Lidsky P.V.,Stanley D.J.,Rivera B.M.,Li K.H.,Burlingame A.L.,Jan E.,Frydman J.,Gross J.D.,and Andino R.,2018,A viral protein restricts Drosophila RNAi immunity by regulating argonaute activity and stability,Cell Host Microbe,24(4):542-557.e9.
?hlund P.,Hayer J.,Hesson J.C.,and Blomstr?m A.L.,2021,Small RNA response to infection of the insect-specific lammi virus and Hanko virus in an Aedes albopictus cell line,Viruses,13(11):2181.
Poirier E.Z.,Buck M.D.,Chakravarty P.,Carvalho J.,Frederico B.,Cardoso A.,Healy L.,Ulferts R.,Beale R.,and Reise Sousa C.,2021,An isoform of dicer protects mammalian stem cells against multiple RNA viruses,Science,373(6551):231-236.
Qian Q.,Xu R.Y.,Wang Y.P.,and Ma L.X.,2022,The NS4A protein of classical swine fever virus suppresses RNA silencing in mammalian cells,J.Virol.,96(15):e0187421.
Samuel G.H.,Adelman Z.N.,and Myles K.M.,2018,Antiviral immunity and virus-mediated antagonism in disease vector mosquitoes,Trends Microbiol.,26(5):447-461.
Santos S.,Obukhov Y.,Nekhai S.,Bukrinsky M.,and Iordanskiy S.,2012,Virus-producing cells determine the host protein profiles of HIV-1 virion cores,Retrovirology,9:65.
Soleimani S.,Valizadeh Arshad Z.,Moradi S.,Ahmadi A.,Davarpanah S.J.,and Azimzadeh Jamalkandi S.,2020,Small regulatory noncoding RNAs in Drosophila melanogaster:biogenesis and biological functions,Brief.Funct.Genomics,19(4):309-323.
Tavernarakis N.,2020,Regulation and roles of autophagy in the brain,Adv.Exp.Med.Biol.,1195:33.
Torri A.,Mongelli V.,Mondotte J.A.,and Saleh M.C.,2020,Viral infection and stress affect protein levels of dicer 2 and argonaute 2 in Drosophila melanogaster,Front.Immunol.,11:362.
Valli A.,Busnadiego I.,Maliogka V.,Ferrero D.,Castón J.R.,Rodríguez J.F.,and García J.A.,2012,The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes,PLoS ONE,7(9):e45957.
van Cleef K.W.R.,van Mierlo J.T.,Miesen P.,Overheul G.J.,Fros J.J.,Schuster S.,Marklewitz M.,Pijlman G.P.,Junglen S.,and van Rij R.P.,2014,Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi,Nucleic Acids Res.,42(13):8732-8744.
Varjak M.,Gestuveo R.J.,Burchmore R.,Schnettler E.,and Kohl A.,2020,aBravo is a novel Aedes aegypti antiviral protein that interacts with,but acts independently of,the exogenous siRNA pathway effector dicer 2,Viruses,12(7):748.
Williams J.,Boin N.G.,Valera J.M.,and Johnson A.N.,2015,Noncanonical roles for tropomyosin during myogenesis,Development,142(19):3440-3452.
Wu M.S.,Chen C.W.,Lin C.H.,Tzeng C.S.,and Chang C.Y.,2012,Differential expression profiling of orange-spotted grouper larvae,Epinephelus coioides (Hamilton),that survived a betanodavirus outbreak,J.Fish Dis.,35(3):215-225.
Wu Q.F.,Luo Y.J.,Lu R.,Lau N.,Lai E.C.,Li W.X.,and Ding S.W.,2010,Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs,Proc.Natl.Acad.Sci.USA,107(4):1606-1611.
Xu J.Y.,Kong J.,Lyu B.,Wang X.T.,Qian Q.,Zhou X.,and Qiu Y.,2021,The capsid protein of rubella virus antagonizes RNA interference in mammalian cells,Viruses,13(2):154.
Xu L.L.,Zhang H.W.,Zhang X.M.,Lin H.,Guo Y.M.,Yu C.,Sun L.R.,and Li Z.X.,2020,Natural shrimp (Litopenaeus vannamei) tropomyosin shows higher allergic properties than recombinant ones as compared through SWATH-MS-based proteomics and immunological response,J.Agric.Food Chem.,68(41):11553-11567.
Ye T.,Zong R.R.,and Zhang X.B.,2012,Involvement of interaction between viral VP466 and host tropomyosin proteins in virus infection in shrimp,Gene,505(2):254-258.
Zeng J.X.,Luo Z.F.,Dong S.P.,Xie X.C.,Liang X.Y.,Yan Y.Z.,Liang Q.M.,and Zhao Z.,2021,Functional mapping of AGO-associated zika virus-derived small interfering RNAs in neural stem cells,Front Cell Infect.Microbiol.,11:628887.
Zhang L.Q.,Xu W.,Gao X.L.,Li W.J.,Qi S.S.,Guo D.Y.,Ajayi O.E.,Ding S.W.,and Wu Q.F.,2020,lncRNA sensing of a viral suppressor of RNAi activates non-canonical innate immune signaling in Drosophila,Cell Host Microbe,27(1):115-128.e8.
Zhang N.,Zhou S.J.,Ji H.H.,and Li X.D.,2022,Effects of the IQ1 motif of Drosophila myosin-5 on the calcium interaction of calmodulin,Cell Calcium,103:102549.
Zhao D.M.,Liang L.B.,Li Y.B.,Liu L.L.,Guan Y.T.,Jiang Y.P.,and Chen H.L.,2012,Proteomic analysis of the lungs of mice infected with different pathotypes of H5N1 avian influenza viruses,Proteomics,12(12):1970-1982.
Zhao S.D.,Kong X.S.,and Wu X.F.,2021,RNAi-based immunity in insects against baculoviruses and the strategies of baculoviruses involved in siRNA and miRNA pathways to weaken the defense,Dev.Comp.Immunol.,122:104116.
Zhu K.Y.,and Palli S.R.,2020,Mechanisms,applications,and challenges of insect RNA interference,Annu.Rev.Entomol.,65:293-311.
基本信息:
DOI:10.13417/j.gab.041.002089
中图分类号:R363
引用信息:
[1]吴梦,齐水水,徐雯等.果蝇原肌球蛋白2抗果蝇C病毒作用研究[J].基因组学与应用生物学,2022,41(Z2):2089-2098.DOI:10.13417/j.gab.041.002089.
基金信息:
国家自然科学基金项目(31871927)资助