nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 04 v.44 355-369
适应喀斯特与非喀斯特生境的两种天葵属植物的基因组特征研究
基金项目(Foundation): 国家自然科学基金项目(32260045); 广西自然科学基金项目(2022GXNSFBA035450); 广西喀斯特植物保育与恢复生态学重点实验室项目(22-035-26)共同资助
邮箱(Email): xinmeiqin2018@163.com;
DOI: 10.13417/j.gab.044.000355
中文作者单位:

广西师范大学生命科学学院;广西壮族自治区中国科学院广西植物研究所,广西喀斯特植物保育与恢复生态学重点实验室;广西壮族自治区中国科学院广西植物研究所,广西植物功能物质与资源持续利用重点实验室;中南林业大学林学院;

摘要(Abstract):

为探索适应不同生境基质植物基因组特征变异规律,本研究以生长在喀斯特石灰岩上特有种广西天葵(Semiaquilegia guangxiensis)和与之近缘且主要生长在泥土上的广布种天葵(Semiaquilegia adoxoides)为研究对象,利用流式细胞术和基于二代测序的基因组Survey分析,评估基因组大小、杂合率、重复序列、 GC含量和倍性,比较和分析基因组特征差异。流式细胞术预估广西天葵和天葵的基因组大小分别为392.12 Mb、 337.68 Mb。K-mer分析预估两者基因组大小分别为390.68 Mb、341.12 Mb,杂合率分别为0.54%、 0.08%,重复序列分别为52.40%、 47.70%,预测两者均为二倍体。基因组初步组装得到两者基因组大小分别为311.62 Mb、 264.24 Mb, GC含量分别为36.47%、 36.34%,经BUSCO评估组装完整性相对较好。以上结果表明,专性生长在喀斯特石灰岩的广西天葵的基因组大小、杂合度、重复序列均高于分布广泛的天葵。对基因组进行重复序列注释和功能分析显示,广西天葵的重复序列和转座子比例均比天葵高,广西天葵重复序列功能注释到了氧化还原、能量代谢、次生代谢物合成、调控Ca2+、细胞壁合成等条目,这可能与其适应喀斯特生境有关。本研究为天葵属植物的全基因组测序、组装和精细图谱绘制进而解析适应不同生境的分子机理奠定基础,也为资源保护和开发利用提供参考。

关键词(KeyWords): 天葵属;基因组大小;杂合率;重复序列;生境
参考文献

陈莉,王盛,刘柳珊,等,2023.基于质量标志物有效性、 特有性及可测性理念的天葵子Q-marker成分预测.药物分析杂志,43(10):1672-1683.[CHEN L,WANG S,LIU L S,et al.,2023.Q-marker component prediction of Semiaquilegiae Radix based on the concept of effectiveness,specificity and testability of quality markers.Chinese Journal of Pharmaceutical Analysis,43(10):1672-1683.]

郭媛,武文卿,张旭凤,等,2020.不同生态区梨树传粉昆虫调查及其优势传粉昆虫访花行为研究.中国农学通报,36(6):127-131.[GUO Y,WU W Q,ZHANG X F,et al.,2020.Investigation on pollinators and flower-visiting beha-vior of dominant pollinators of pear trees in different eco-regions.Chinese Agricultural Science Bulletin,36(6):127-131.]

黄阿晶,周佳熠,李天泽,等,2019.基于流式细胞术和K-mer分析的苦豆子基因组大小估测.中草药,50(24):6098-6102.[HUANG A J,ZHOU J Y,LI T Z,et al.,2019.Flow cytometry and K-mer analysis estimates of genome size of Sophora alopecuroides.Chinese Traditional and Herbal Drugs,50(24):6098-6102.]

刘学勇,姬志勤,2019.天葵子化学成分及抑菌活性研究.天然产物研究与开发,31(7):1177-1182.[LIU X Y,JI Z Q,2019.Studies on chemical constituents and antibacterial activity of Semiaquilegia adoxoides.Natural Product Research and Development,31(7):1177-1182.]

石米娟,程莹寅,张婉婷,等,2016.浅析基因组大小的进化机制.科学通报,61(30):3188-3195.[SHI M J,CHENG Y Y,ZHANG W T,et al.,2016.The evolutionary mechanism of genome size.Chinese Science Bulletin,61(30):3188-3195.]

孙立,2014.耧斗菜族(毛茛科)三种植物的繁育系统和传粉生物学研究,硕士学位论文.西安:陕西师范大学.[SUN L,2014.Study on breeding system and pollination biology of three species of Tribe Isopyreae (Ranunculaceae),Thesis for M.S.Xi′an:Shaanxi Normal University.]

吴帆,张莉,周晶,等,2020.基于花粉形态及DNA条形码的中华蜜蜂传粉多样性研究.中国计量大学学报,31(4):507-513.[WU F,ZHANG L,ZHOU J,et al.,2020.Study on Apis cerana cerana pollination diversity based on bee pollen and DNA barcode.Journal of China University of Metrology,31(4):507-513.]

徐冉,肖海涛,王建塔,等,2014.天葵化学成分及其药理作用研究进展.天然产物研究与开发,26(7):1154-1159.[XU R,XIAO H T,WANG J T,et al.,2014.Advance on chemical compositions and pharmacological studies of Semiaquilegia adoxoides.Natural Product Research and Development,26(7):1154-1159.]

张小燕,刘志香,廖保生,等,2017.基于本草基因组学应用流式量测序技术检测人参基因组大小.世界科学技术-中医药现代化,19(10):1724-1728.[ZHANG X Y,LIU Z X,LIAO B S,et al.,2017.Estimation of genome size of Ginseng based on herbgenomics by flow cytometric analysis and high-throughput sequence.Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,19(10):1724-1728.]

张依楠,吉志超,廖海民,2017.从天葵药材的解剖结构探讨其形态本质.山地农业生物学报,36(3):86-89.[ZHANG Y N,JI Z C,LIAO H M,2017.Study on the morphological nature from the anatomical structure of medicinal parts of Semiaquilgia adosoides.Journal of Mountain Agriculture and Biology,36(3):86-89.]

赵乐,朱畇昊,王敏,等,2021.基于流式细胞术和基因组survey分析的地黄基因组研究.中草药,52(3):821-826.[ZHAO L,ZHU Y H,WANG M,et al.,2021.Estimation of Rehmannia glutinosa genome size based on flow cytometry and genome survey analysis.Chinese Traditional and Herbal Drugs,52(3):821-826.]

BAO W D,KOJIMA K K,KOHANY O,2015.Repbase Update,a database of repetitive elements in eukaryotic genomes.Mob.DNA,6(1):11.

BENNETZEN J L,MA J X,DEVOS K M,2005.Mechanisms of recent genome size variation in flowering plants.Ann.Bot.,95(1):127-132.

CAMACHO C,COULOURIS G,AVAGYAN V,et al.,2009.BLAST+:architecture and applications.BMC Bioinform.,10(1):421.

CAO Y,ALMEIDA-SILVA F,ZHANG W P,et al.,2023.Genomic insights into adaptation to Karst limestone and incipient speciation in east Asian Platycarya spp.(Juglandaceae).Mol.Biol.Evol.,40(6):msad121.

CHEN S F,ZHOU Y Q,CHEN Y R,et al.,2018.Fastp:an ultra-fast all-in-one FASTQ preprocessor.Bioinformatics,34(17):i884-i890.

DANECEK P,BONFIELD J K,LIDDLE J,et al.,2021.Twelve years of SAMtools and BCFtools.Gigascience,10(2):giab008.

DU?KOVá E,KOLá■ F,SKLENá■ P,et al.,2010.Genome size correlates with growth form,habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae).Preslia,82(1):127-148.

ELLINGHAUS D,KURTZ S,WILLHOEFT U,2008.LTRharvest,an efficient and flexible software for de novo detection of LTR retrotransposons.BMC Bioinform.,9(1):18.

FENG C,WANG J,WU L Q,et al.,2020.The genome of a cave plant,Primulina huaijiensis,provides insights into adaptation to limestone Karst habitats.New Phytol.,227(4):1249-1263.

FLYNN J M,HUBLEY R,GOUBERT C,et al.,2020.RepeatModeler2 for automated genomic discovery of transposable element families.Proc.Natl.Acad.Sci.USA,117(17):9451-9457.

FU D,ORB■ Z Y,RAVEN P H,HONG D Y.Flora of China.Beijing:Science Press;St.Louis:Missouri Botanical Garden Press:281-282.

GRANDBASTIEN M A,1998.Activation of plant retrotransposons under stress conditions.Trends Plant Sci.,3(5):181-187.

GREILHUBER J,DOLE?EL J,LYSáK M A,et al.,2005.The origin,evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents.Ann.Bot.,95(1):255-260.

HUANG Y S,GUO J,ZHANG Q,et al.,2017.Semiaquilegia guangxiensis (Ranunculaceae),a new species from the limestone areas of Guangxi,China,based on morphological and molecular evidence.Phytotaxa,292(2):180-188.

KANG M,TAO J J,WANG J,et al.,2014.Adaptive and nonadaptive genome size evolution in Karst endemic flora of China.New Phytol.,202(4):1371-1381.

LI H,DURBIN R,2010.Fast and accurate long-read alignment with Burrows-Wheeler transform.Bioinformatics,26(5):589-595.

LU Y B,CHEN X,YU H,et al.,2024.Haplotype-resolved genome assembly of Phanera championii reveals molecular mechanisms of flavonoid synthesis and adaptive evolution.Plant J.,118(2):488-505.

MANNI M,BERKELEY M R,SEPPEY M,et al.,2021.BUSCO update:novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic,prokaryotic,and viral genomes.Mol.Biol.Evol.,38(10):4647-4654.

MAR?AIS G,KINGSFORD C,2011.A fast,lock-free approach for efficient parallel counting of occurrences of K-mers.Bioinformatics,27(6):764-770.

OU S J,JIANG N,2018.LTR_retriever:a highly accurate and sensitive program for identification of long terminal repeat retrotransposons.Plant Physiol.,176(2):1410-1422.

PATERSON A H,BOWERS J E,BRUGGMANN R,et al.,2009.The Sorghum bicolor genome and the diversification of grasses.Nature,457(7229):551-556.

PRJIBELSKI A,ANTIPOV D,MELESHKO D,et al.,2020.Using SPAdes de novo assembler.Curr.Protoc.Bioinform.,70(1):e102.

QIN X M,HUANG Z P,LU Y B,et al.,2020.The complete chloroplast genome of Semiaquilegia guangxiensis,a rare and endemic herb in Guangxi,China.Mitochondrial DNA B Resour.,5(3):2324-2325.

RANALLO-BENAVIDEZ T R,JARON K S,SCHATZ M C,2020.GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes.Nat.Commun.,11(1):1432.

SCHUBERT I,VU G T H,2016.Genome stability and evolution:attempting a holistic view.Trends Plant Sci.,21(9):749-757.

TANG R J,LUAN S,2017.Regulation of calcium and magne-sium homeostasis in plants:from transporters to signaling network.Curr.Opin.Plant Biol.,39:97-105.

TARAILO-GRAOVAC M,CHEN N S,2009.Using RepeatMasker to identify repetitive elements in genomic sequences.Curr.Protoc.Bioinformatics.,25(1):4-10.

VURTURE G W,SEDLAZECK F J,NATTESTAD M,et al.,2017.GenomeScope:fast reference-free genome profiling from short reads.Bioinformatics,33(14):2202-2204.

WANG W,LU A M,REN Y,et al.,2009.Phylogeny and cla-ssification of Ranunculales:evidence from four molecular loci and morphological data.Perspect.Plant Ecol.Evol.Syst.,11(2):81-110.

WANG X,LIU S J,ZUO H,et al.,2021a.Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees.Curr.Biol.,31(17):3848-3860.

WANG X T,MORTON J A,PELLICER J,et al.,2021b.Genome downsizing after polyploidy:mechanisms,rates and selection pressures.Plant J.,107(4):1003-1015.

WEI C,YANG H,WANG S,et al.,2018.Draft genome sequence of Camellia sinensis var.sinensis provides insights into the evolution of the tea genome and tea quality.Proc.Natl.Acad.Sci.USA,115(18):E4151-E4158.

WHEELER T J,CLEMENTS J,EDDY S R,et al.,2013.Dfam:a database of repetitive DNA based on profile hidden Markov models.Nucleic Acids Res.,41(D1):D70-D82.

XIE D F,CHENG R Y,FU X,et al.,2021.A combined morphological and molecular evolutionary analysis of Karst-environment adaptation for the genus Urophysa (Ranunculaceae).Front.Plant Sci.,12:667988.

XIE J H,ZHAO H F,LI K P,et al.,2020.A chromosome-scale reference genome of Aquilegia oxysepala var.kansuensis.Hortic.Res.,7(1):113.

YAN L,WANG X,LIU H,et al.,2015.The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb.Mol.Plant,8(6):922-934.

ZHAI W,DUAN X S,ZHANG R,et al.,2019.Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae.Mol.Phylogenet.Evol.,135:12-21.

ZHU J K,2016.Abiotic stress signaling and responses in plants.Cell,167(2):313-324.

基本信息:

DOI:10.13417/j.gab.044.000355

中图分类号:Q943.2;S567.239

引用信息:

[1]莫晓芫,张强,黄夕洋等.适应喀斯特与非喀斯特生境的两种天葵属植物的基因组特征研究[J].基因组学与应用生物学,2025,44(04):355-369.DOI:10.13417/j.gab.044.000355.

基金信息:

国家自然科学基金项目(32260045); 广西自然科学基金项目(2022GXNSFBA035450); 广西喀斯特植物保育与恢复生态学重点实验室项目(22-035-26)共同资助

检 索 高级检索